
REPORT DOCUMENTATION PAGE j E)R COMPSTLETNGF-
EP:Q. ,mSEQ 12 GOVT ACCESS10ON*NO I RECIPIt"T'S CATALOa mumeEn

AIM 1225
4 Ti1 T L. E (ofld S.,b11f1. S, TYPE OF REPORT A PERIOD COVERED

Fault Tolerant Design for Multistage Routing memorandum

Netors PERFORMING ORG. REOR NUMBER

7 AijT.4ORfo I. CONTRACT OR GRANT wumSER.e)

Andre DeHon, Tom Knight, and Henry Minsky N00014-88-K-0825
N00014-85-K-0124

-rA.N Z RAWjZA7IQN NAME ANO ACOE5 10. PR:)GRAM ELEWEN' 1 AJEZ' TASK
AREA 6 WORK UNIT NUMBERS

f%% Artif:icial Inte11igen~cE Laboratory

5,45 Technology Square
N Cambridge, MAA 02139 ______________

4TROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency April 1.990
R* 1400 Wilson Blvd. 13. NMB~ER OF PAGES

~N Arlington, VA 22209 20N NITORING AGENCY NAME & ADDRESSI1 differentI from Controlliung Office) 1S. SECURITY CLASS. (of tis report)

Office of Naval Research UNCLASSIFIED

Information SystemsD Arlington, VA 22217 Ilsa. DCLASSIEFICATION/DoWmGRADING

STRISUTION STATEMENT (01 this Popoff)

Distribution is unlimited

17. DISTRIBUTION STATEMENT (*f IN.I Abstt,.eeed In Block 20, 11 diII.*in~t Iv.n Asen)

IS. SUPPLEMENTARY NOTESt.LtkIL

None

It. KEY WORDS tColiftu* on Doverso sid It Reoso.my And Identfy by Nock isb"r)

~mutipthnetworks computer neatworks
multistage networks massively parallel computers '

fault tolerance

20. ABSTRACT (ConhiffWO On reverse aid, It neO W817 Oid Idmfi fY b6? b809k 10111016)

Abstract: _4As the size of digital systems increases, the average length of time
between single component failures diminishes. To avoid component related failures,
large computers must be fault-tolerant; that is, the computer must perform correctly
even when some components fail. jInLthis paper,-we concentrateTon providing fault-
tolerance in the interconnection network for massively parallel MIMD computers.

(continued on back)

DD ~~~ ~ EDITION OF I NOV 65 IS OBSOLETE NLS IFIE
DD ~ ___ SI A,*,04 "603 1473UCASFE

-/ !10460 SECURITY CLASSIFICATION OF THIS PAGE (Iftin Veto 20010FOCDLfh';U1. N STATEME~NT A

Block 20 continued:

Particularly, w5 focuson methods for achieving a high degree of fault-tolerance in
multistage routing networks.-We describea multipath scheme, for providing end-to-
end fault-toler ice on large networks. The scheme improves routing performance
while keeping network latency low. We also describe the novel routing component,

.RN1, which implements this scheme, showing how it can be the basic building block
for fault-tolerant multistage routing networks.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I.Memo No. 1225 April, 1990

Fault-Tolerant Design for Multistage Routing Networks

Andr6 DeHon
Tom Knight

Henry Minsky

Abstract: As the size of digital systems increases, the average length of time
between single component failures diminishes. To avoid component related failures,
large computers must be fault-tolerant; that is, the computer must perform correctly
even when some components fail. In this paper, we concentrate on providing fault-
tolerance in the interconnection network for massively parallel MIMD computers.
Particularly, we focus on methods for achieving a high degree of fault-tolerance in
multistage routing networks. We describe a multipath scheme for providing end-to-
end fault-tolerance on large networks. The scheme improves routing performance
while keeping network latency low. We also describe the novel routing component,
RN1, which implements this scheme, showing how it can be the basic building block
for failt-tolerant multistage routing networks.

Acknowledgments: This report describes research done at the Artificial Intelligence Labora-
tory of the Massachusetts Institute of Technology. Support for the Laboratory's Artificial Intelli-
gence Research is provided in part by the Advanced Research Projects Agency under Office of Naval
Research contracts ONR N00014-88-K-0825 and N00014-85-K-0124.

90 07

1 Introduction

As we begin to design and construct larger computers, the issue of fault-tolerance
becomes increasingly important. The number of components increases with the size
of the system. As the number of components increases, the length of time between
single component failures necessarily decreases. If the system is incapable of operating
correctly when components fail, the mean time between failures (MTBF) for the
entire system decreases similarly. In the extreme case of very large systems, the
MTBF becomes intolerably small. Even in moderately sized systems, this decrease
in MTBF increases the frequency of downtime and the need for repair.

In building large computer systems, we must design to offset the inevitable de-
crease of MTBF that accompanies increasing system size. While technology and
processing improvements will have some affect on the achievable MTBF for single
components, these improvements will not occur at a sufficient pace for us to rely on
them to keep the system MTBF at an acceptable level. We are thus forced to seek
other means to offset the impending increase in the failure rate of the system.

Given that the MTBF for any component is essentially constant, we wish to im-
prove the system MTBF. This can effectively be done by designing the system so that
it can operate when some of the components in the system are disfunctional. Multi-
ple component failures must then accumulate in order for the system to be rendered
inoperative. The more faulty components the system can tolerate simultaneously,
the longer the MTBF.

Certainly, system failures are least tolerable when they are unanticipated. The
effect of component failures can be further ameliorated when the system is capable
of tolerating many faults and identifying the faults as they occur. Knowing which
components have failed allows the failures to be repaired before the system is rendered
inoperative. The downtime for component repair can be scheduled and will thus be
less costly and inconvenient than are sudden and unexpected system failures.

In this paper, we describe a scheme for achieving a reasonable level of fault-
tolerance in the network of a massively parallel MIMD computer by providing multi-
pie paths through the network between each pair of network endpoints. Connections For
are arranged so that any of several distinct routing components at each stage of rout- V t
ing can be used to route to the desired destination. We do not concern ourselves Cl
with fault-tolerance issues outside of the network. The design presented is applicable t_
across the wide range of networks constructed using multiple routing stages, includ-
ing all kinds of banyan networks [Kruskal 86] and fat-tree networks [Leiserson 851
[Greenberg 851 [DeHon 90]. .. /

A,-

.1.

Processor Cache
Controller

Memory

Processor Cache
c t r :Network

Memory

Processor Cache
Controller

Memory

Figure 1: Network Processor Interface

2 Background

2.1 Network Processor Interface

In order for the network to be useful in the context of a large-scale parallel com-
puter, it must interface coherently with the network endpoints. For a large parallel
computer, each endpoint will consist of a processor and memory. A typical network
processor interface is shown in Figure 1. Here each network endpoint is a processor
with its own local memory and a cache-controller. The cache-controller is responsible
for coordinating the interactions of the network, the processor, and the local memory
as well as maintaining its local cache and keeping the cache coherent with the rest
of the network. The exact details of the connection between the processor and the
network are a separate architectural issue. In general, the processor has some number
of inputs from and some number of outputs to the network. Multiple connections to
and from the network are necessary in order to prevent any single roui iag component
or wire in the network from being critical.

2.2 Critical Components

The term critical is used throughout this paper to rerer to a component or wire
when it must function properly in order for the systcm to operate correctly. A
component is non-critical if the system can continue to operate correctly, perhaps
with degraded performance, when the component fails.

In most current computer designs all components are critical. The most no-

2

Basic Crossbar (no connections)

Single Connections through Crossbar

Two Connections through Crossbar

Figure 2: 2 x 2 Crossbar Configurations

table exception is the memory systems of many modern computer systems. Many
computers use Error-Correcting Codes [Peterson 72] [Clark 82] in their memory sys-
tems to tolerate faults in memory components. The Symbolics LISP Machine and
Thinking Machine's Connection Machine are examples of computers that use ECC
to protect their memory systems. The LISP Machine uses ECC on its main mem-
ory [Symbolics 87] while the Connection Machine uses ECC on its Data Vault disk
memory [TMC 88].

2.3 Multistage Networks

In multistage routing networks, each routing component is effectively a small
crossbar. Traditional crossbars have i inputs and o outputs and can connect any of
the i inputs to any of the o outputs with the restriction that only one input can
be connected to each output at the same time. Each of the o outputs is logically
distinct. That is, all of the outputs route in logically different directions. If more
than one input wishes to connect to the same output direction, all but one of such
inputs are blocked. The outputs in each logical direction each connect to exactly
one routing component in the next routing stage; this connection is made over a
single physical group of wires. The number of different routing directions a routing
component distinguishes, o, is often referred to as the component's radix.

Figures 2 shows the simple 2 x 2 crossbar routing element and its possible con-

3

~ ..: ,L,,

Figure 3: 16 x 16 Bidelta Network Constructed from 2 x 2 Crossbars

figurations. The input wires and output wires are orthogonal to each other. Each
input and output wire runs across the chip so that any input can be connected to
any output. Dots are used in Figure 2 to denote when two wires are connected to
each other. Multiple inputs can be connected to outputs simultaneously as long as
each input connects to a different output.

Figure 3 shows how a bidelta network with 16 inputs and outputs can be con-
structed using the 2 x 2 crossbar routing elements shown in Figure 2. Input and
output nodes are shown on separate sides of the network to keep the diagram sim-
ple; each pair of input and output nodes can represent a single component. The
highlighted path through the network shows the path a connection would take from
processor 6 to processor 16.

3 Network Inputs

Each network endpoint must have multiple input connections to the network in
order to prevent any single wire or routing component in the first stage of routing
from being critical. Network inputs from a single endpoint should connect through
many different physical components to maximize fault-tolerance. For banyan-style
multistage networks, all inputs to the first routing stage are logically equivalent.
That is, connections through all inputs to the first stage routers are capable of reach-
ing the same destination with the same routing specification. Thus, inputs from
the same endpoint can easily be spread across multiple routing components. In tree
structures, such as fat-trees, only small sets of inputs are logically equivalent. In
order to obtain maximal fault-tolerance in tree topologies, there must be at least as
many components composing each set of logically equivalent inputs as there are input

4

connections.
With n inputs from each endpoint, n failures can isolate an endpoint from the

network in the worst-case in which all faults concentrate around a single endpoint.
More than n failures can be sustained as long as no more than (n - 1) failures are
concentrated around a single endpoint. Whether or not the complete loss of an
endpoint from the network is sufficient to cause the entire system to fail depends on
the fault-tolerance of the computational paradigm being used and is a separate issue
from the fault-tolerance of the network.

Additional wiring constraints can be utilized to minimize the effects of multiple
component failures. Consider, for example, Figures 4 and 5. These two figures
show the connection of processors to the first stage of routing components where
each processor's inputs are attached to different physical routing components. In
Figure 4, if the first two routing components in the first stage of routers fail, four
processors are cut off from the network. However, in Figure 5, if the first two routing
components fail, only one processor is isolated from the network. In fact with the
configuration in Figure 5, any two component failures in the first stage of routing
will isolate at most one processor from the network; similarly, any three component
failures will isolate at most two processors from the network. For this simple case
where each processor has two inputs to the network, the additional wiring constraint
used to generate the wiring pattern in Figure 5 is: no two processors sharing one first
stage router should also share a second first stage router. In a more general sense, the
wiring in Figure 5 provides better fault-tolerance because the inputs have a greater
fan-out or expansion into the network. A more formal characterization of expansion
is provided in [Leighton 89-1].

4 Paths Inside the Network

Considering the traditional approach to multistage networks, we see that a single
faulty component or wire in the network will prevent some inputs from reaching
some outputs. That is, all the components and wires involved in routing between
two network endpoints are critical to the functionality of the network. This can easily
be seen by reviewing Figure 3. Each route between a given input and output can
traverse exactly one path. If a single wire or component fails, some input will be
isolated from some output.

To avoid making the internal network wires and routing components critical, the
crossbar must be redesigned to allow redundant paths through the network. We
can give each crossbar element multiple logically equivalent outputs in each logical
direction. Two or more outputs are considered logically equivalent, when they can
be reached with the same routing sequence and they connect to logically equivalent
inputs. A router distinguishing o logically distinct destinations with r outputs in each
logical direction will have a total of o- r outputs. The number of logically equivalent

5

Figure 4: Suboptimal Wiring of Processors to First Stage Routing Elements

outputs in each logical direction from a routing component, r, is referred to as the
dilation of the router. Outputs going in the same logical direction can be connected
to distinct physical routing components. The number of possible paths through the
network can, up to a point, expand at each routing stage. No single wire or routing
component within the network remains critical.

If we consider that any connection entering the network can start through any
of n routing components in the first stage and that the number of paths increases

6

Figure 5: Fault-Tolerant Wiring of Processors to First Stage Routing Elements

through the network, it is easy to see that the number of input connections provides
a tighter bound on the worst-case number of tolerable failures than one would derive
considering only internal routing component failures. The same kind of consideration
can be applied to the number of outputs provided to each endpoint by the network.
Section 6 expands this reasoning to provide a quantification of the number of paths
through the network.

As mentioned for the network inputs, the redundant outputs from each routing

7

(
IF III

Multipath Crossbar (no connections)

Logically Equivalent Connection Pairs

Figure 6: 4 x 2 Crossbar with a dilation of 2

component should be connected to as many distinct physical routing components as
possible to maximize fault-tolerance. Expansion is just as important for connections
between routers in subsequent routing stages within the network as it was for input
connections. [Leighton 89-1] characterizes this notion of expansion.

Figure 6 shows a 4 x 2 crossbar routing component with 2 outputs in each logical
direction. Up to two inputs can be simultaneously routed in each logical output
direction.

Figure 7 shows a 16 x 16 multipath network constructed from the redundant
output 4 x 2 crossbar routers shown in Figure 6. For comparison with Figure 3, all
the wires which could be used to route a connection between processor 6 and processor
16 are highlighted. Figure 7 illustrates that there are always multiple links between
routing stages which can make the connection; additionally, there are multiple routing
components at each stage that could be used to make the connection.

Redundant paths through the network also improve network routing performance
by reducing the probability that connections will block each other within the network.
[Knight 89] shows the effects of these multiple paths on network routing statistics for a
specific configuration. Knight and Sobalvarro describe tools for making more general
performance comparisons in [Knight 90].

8

...
G = W, 1 147X

I RS

Figure 7: 16 x 16 Bidelta Network Constructed from 4 x< 2 Crossbars with a Dilation
of 2

9

5 Network Outputs

As is the case with network inputs, there must be multiple output connections
from the Petwork to each endpoint. Multiple output connections prevent any single
wire or routing component from being critical.

Using the crossbar routing component described in the previous section, each
routing component would supply multiple outputs to each endpoint. From a fault-
tolerance perspective, this is non-optimal since this means a single component failure
would sever multiple outputs to a single endpoint. If each endpoint had m output
connections and a crossbar router with a dilation of r were used, an endpoint could
be isolated from the network by only 2- faults. To maximize the number of tolerable
faults for a given number of output connections, r must be minimized. At the final
routing stage. then, fault-tolerance is maximized by using crossbar routing elements
with a single output in each logical direction.

Using crossbar routers with a single output in each logical direction in the final
stage of the routing network will give the network slightly inferior routing performance
to a similar configuration in which crossbar routers with multiple outputs per logical
direction are used in the final routing stage. However, the improvement in fault-
tolerance is considerable and generally worth the tradeoff.

Note that the last stage of the network in Figure 7 was constructed using standard
crossbar routing components like the ones shown in Figure 2. Using these crossbars
with a dilation of one, two separate routing components can provide an output to
each endpoint. If the 4 x 2 crossbars with a dilation of 2 had been used in the final
stage, then a single component would be providing outputs to each network endpoint;
this single component would then be critical for the network to be fully operational.

6 Total Path Expansion

In the previous sections five parameters have been used to characterize the mul-
tistage network: the number of input connections per endpoint (n), the number of
outputs to each endpoint (in), the number of inputs to each crossbar router (i), the
switch radix (o), and switch dilation (r). Assuming all the routing components are
identical, we can roughly quantify the number of paths through the network. Let
N be the number of routing stages in the network. The number of paths between a
single source destination pair expands further away from the source into the network
at the rate of dilation, r. Thus, we have pin(s), the number of paths to stage s given
by Equation 1.

pi=(s) = n x r [- (1)

After a point in the network, the paths will have to diminish in order to connect to
the proper destination. Looking backward from the destination node, we see that the

10

1 2 3 415
p(s) 2 4 8 4 2

Table 1: Connections into Each Stage

paths must grow as the network radix o. This constraint is expressed in Equation 2.

pout(s) = m x 0 (N+1)-s] (2)

These two expansions must, of course, meet at some point inside the network. This
occurs when pi,, and Pout are equal. We may call this turning point stage s'. s' can
be determined as follows:

Pow,(S') = pi. (S')
n x r [s - 11 = m O[(N + 1)- ,'

s- (N + 1) x In(o) + In(m) + ln(r) - In(n) (3)

ln(r) + ln(o)

Once Equation 3 is solved for s', we can quantify the number of connections into each
stage of the network by Equation 4.

n x r[- 1] S < s'

p(s) = min(r'8], 0 [(N+I) -]) 9 = ' (4)
M X 0 [(N+1)-s] S > S'

Note that Equation 4 expresses the maximum achievable number of paths between
stages for a single source-destination pair. Not all wiring patterns will actually achieve
this maximum between every source-destination pair. In any case, Equation 4 pro-
vides a good first-order estimate of the number of paths available. The total number
of distinct paths between each source and destination simply grows as Equation 1
and is thus given by Equation 5.

Ptota(S) = n x r[N - 1 (5)

For the sake of example, consider the network in Figure 7 (m = n = i = o = r = 2,
N = 4). Solving Equation 3 for s', we find s' = 3. The number of connections into
each stage can then be calculated as shown in Table 1. The total number of paths
is simply 2 x 2' = 16. Noting Figure 7, we see it does achieve this maximum path
expansion for the highlighted path; the paths between all other source and destination
pairs in Figure 7 also achieve this path expansion.

11

7 Parameter Freedom

In the previous section we identified a number of parameters which characterize
multistage networks (n, m, i, o, r). Additionally, the network is characterized by the
number of endpoints it supports (Np). While these parameters have been discussed
separately, they are certainly not free to be specified completely independent of one
another. The bandwidth into the network from the endpoints must match the band-
width into the first stage of routing. The bandwidth between network stages must
match. The bandwidth out of the network must match the output bandwidth to the
endpoints. The number of processors is usually a power of the radix of the crossbar
routers.

Square networks (i.e., n = m) are often good configurations [Kruskal 86], es-
pecially when all endpoints are being treated equally. Square networks are usually
constructed from square crossbar routing elements (i.e., i = o x r). Bandwidth
matching is moderately easy in these cases. Rectangular networks with n < m are
often desirable because they offer less network congestion, since the number of inputs
is less than the number of outputs. However, recall that the smaller the number of
inputs to the network from each endpoint (n), the less fault-tolerant the network. A
square network (i.e., one in which the total number of inputs and outputs are equal)
can gain the same advantages as the rectangular network, by only utilizing a fraction
of the inputs at a given time. The network has the improved fault-tolerance of the
square network with the decreased congestion of a rectangular network.

8 Path Selection

Once we've constructed a network with redundant paths as described, there still
remains the issue of how these paths are utilized. Standard multistage networks (e.g.,
the network of Figures 3) have the general advantage that they are self-routing. That
is, messages can be routed from source to destination using only a few bits of data
from the message stream to perform routing at each stage in the network. Switching
and arbitration to set up paths through the network can occur asynchronously at
each routing element involved in a connection through the network without any
global arbitration. It is not necessary to have global knowledge of the state of the
network.

The distributed self-routing characteristics of multistage networks should be pre-
served when routing through a network with redundant paths. To achieve self-routing
and fault- tolerance when there are multiple paths through the network, we can use
a circuit-switched source-responsible random oblivious routing scheme.

12

8.1 Source-Responsible Protocol

Since the network can have faulty components while remaining functional, we
must provide a mechanism for establishing when a connection succeeds in traversing
the network. Likewise, when more connections need to be routed to a given logical
output direction of a routing component than there are outputs in that logical direc-
tion, connections must be dropped due to the lack of available resources; this blocking
case must also be detected. To deal with both these cases where a message can be
lost in the network, we use a source-responsible protocol and provide a mechanism
to obtain connection status. After a message has been sent, each routing component
reports back to the source the outcome of its attempt to transmit the message. If
all the routing components and the destination report that the connection was made
as requested, the source knows that the complete connection through the network
succeeded. When one of the routing components reports that it dropped the message
or when a routing component fails to respond properly, the source knows that the
connection failed and must be retried.

8.2 Random Oblivious Routing

At each switching stage, one of three things can happen. In the case in which there
is exactly one output connection available in the desired logical output direction, the
connection will obviously get routed through the available output. In the case where
no outputs in the desired logical output direction are available, the connection must
be dropped. When more than one output in the requested direction are available,
the routing component randomly selects which output to use. Thus, all connections
which can be made through a given component are made.

The routing component itself does not know the location of any faults in the
network and so cannot route to avoid them; instead, the routing component routes
obliviously to a logically correct output. If a connection through the network fails due
to congestion or faulty components, the source will know of the failure and attempt
to make the connection again. Since the choice of output ports is random at each
routing stage, it is likely that subsequent connections through the network will take
different paths. With this random routing, it should be possible to get a complete
connection through the network in a small number of attempts even when the network
has multiple faults.

9 Fault Identification

Fault localization in the network is facilitated by the connection status returned
by each routing component. The data returned can include a checksum on the data
sent through the routing component as well as an indication of which of the outputs,
if any, was actually used in routing the connection. With a knowledge of the logical

13

direction in which the connection was destined, the actual output port utilized at
each stage of routing, and the point in the network where the connection was lost,
the fault can be localized to the connection between exactly two components in
the network. The fault can then lie in either component or in the wire ccnnecting
them. Information from additional failures can be used to further localize the fault
as necessary.

Each endpoint only has connection information from its own network transactions.
This necessarily means each endpoint has only a limited amount of information about
faults in the network. A higher-level protocol should be used to monitor the global
network state so that repairs can be scheduled as necessary.

10 Other Fault-Tolerant Multistage Networks

The predominant approach to providing fault-tolerance in multistage routing net-
works has been to construct a network with more stages of switching than are actu-
ally required to uniquely specify the destination ([Lawrie 83], [Chin 84], [Siegel 85],
[BBN 87] et. al.). The set of destination specifications that reach the same physical
destination defines a class of equivalent paths. Since any of several paths can reach
the destination, it is possible to choose a path which avoids any fault in the network.
Most of these schemes require the processor to choose its own path through the net-
work. These schemes almost exclusively assume each endpoint has a single input and
a single output connection to the network. BBN's large Butterfly Plus computers
actually implement this extra stage approach to fault-tolerance.

An alternative approach for fault-tolerance is to simply provide multiple redun-
dant networks ([Franaszek 881, [Kruskal 83]). The endpoint chooses a network over
which to make the connection. The networks route the connections independently
and reconverge at the destination endpoint. This approach does provide multiple
input and output connections. Again, the endpoints are responsible for choosing
fault-free paths.

Kruskal and Snir also propose a network with redundant paths using switches
similar to ours in [Kruskal 83]. They, however, do not develop any of the details of
the network. They suggest the redundant outputs from a routing element all go to
the same physical component; this, of course, undermines many of the benefits of the
dilated network.

Leighton and Maggs [Leighton 89-1] suggest a related multipath network. Their
theoretical work was influential to our design. In contrast to ours, their work details
packet-switched routing of data presented synchronously into the network. They use
a much more complicated routing scheme which requires approximately 4 logo(Np)
(where o is the switch radix) steps in order to route a single connection and an
intricate routing switch. Our network routes in logo(Np) steps, but does so using
oblivious routing. With the additional arbitration in their network, Leighton and

14

8 I 2 * AR"Afec

2 41 4A c rb

Figure 8: RN1 Logical Configurations

Maggs can guarantee that they can simultaneously route the maximum number of
packets allowed by the network's physical topology. Our network simply relies on the
probabilistic properties of the data and network in order to route a large portion of
connections simultaneously.

11 RNI: A Fault-Tolerant Crossbar Routing Component

RN1 is a custom CMOS routing component currently under construction to
provide simple high speed switching for fault-tolerant networks. RN1 has eight nine-
bit wide input channels and eight nine-bit wide output channels. These nine-bit wide
channels provide byte wide data transfer with the ninth bit serving as a signal for the
beginning and end of transmissions. RN1 can be configured in either of two ways,
as shown in Figure 8. The primary configuration is a 4 x 4 crossbar router with a
dilation of two. In this configuration, all 8 input channels are logically equivalent.
Alternately, the component can be configured as a pair of 4 x 4 crossbars, each with
4 logically equivalent inputs and a dilation of one.

Simple routing is performed by using the first two bits of a transmission to indicate
the the desired output destination. If an output in the desired direction is available,
the data transmission is routed to one such output. Otherwise, the data is ignored.
In either case, when the transmission completes, the RN1 routing component informs
the sender of the connection status so that the sender will know whether or not it
is necessary to retry the transmission. When both outputs in the desired output
direction are available, the component randomly chooses which port to use.

To allow rapid responses to network requests, the RN1 routing component allows
connections opened over the network to be reversed; that is, the direction of the con-
nection can be reversed allowing data to flow back from the destination to the source
processor. The ability to reverse a network connection allows a processor requesting
data to get its response quickly without requiring the processor it is communicating
with to open a separate connection through the network.

Figure 9 shows a 16 x 16 bidelta style network constructed from the RN1 routing
component. A single physical RNI routing component would implement two of the
4 x 4 crossbars in the second and final routing stage. To achieve the desired fault-

15

• // ."~
,~~,.....=

I ~~~ "-. -.

7 7

;?\ "- /J I iJ

Figure 9: 16 x 16 Bidelta Network Constructed from RN1 Routing Components

tolerance, each of the 4 x 4 crossbars in a single RN1I package should be connected to
a different set of four network endpoints. As with Figures 3 and 7, the wires available
for routing a connection from processor 6 to processor 16 are highlighted in Figure 9.

The RN1 routing component is described further in [Knight 89] and [Minsky 90].

16

12 Conclusions

A high degree of fault-tolerance is essential in order to build functional massively
parallel computer systems. Fault-tolerance can be achieved in the interconnection
network by providing multiple paths through the network and multiple input and
output connections to the network endpoints. Multiple paths can be realized utiliz-
ing crossbar routing components which provide multiple connections in each logical
output direction. In the multipath scheme, paths through the network can be se-
lected in a simple self-routing manner allowing cheap low-latency interconnection.
Multipath routing has the advantageous side-effect of improving the routing perfor-
mance of the network. Fault recovery is facilitated by a simple source-responsible
connection protocol utilizing connection status information from routing components
in the network. Faults and blocking within the network can be handled in a uniform
manner. The RN1 routing component implements this fault-tolerant scheme and
forms the basis for fault-tolerant multistage networks.

Acknowledgments

Tom Leighton offered valuable suggestions which helped develop schemes for
avoiding critical components at the network inputs and outputs.

Thanks to Andy Berlin, Max Hailperin, and Pat Sobalvarro for reading and proof-
ing drafts of this paper.

References

[Minsky 90] Minsky, Henry Q., An Enhanced Crossbar Routing Chip for a Shared
Memory Multiprocessor, S.M. Thesis, MIT, forthcoming.

(DeHon 90] DeHon, Andr6 M., Fat-Tree Routing for Transit, MIT A.I. Technical
Report 1224, May 1990.

[Knight 90] Knight, T. F. and Sobalvarro, P. G., Routing Statistics for Unqueued
Banyan Networks, MIT A.I. Lab Memo 1103, forthcoming.

[Leighton 89-2] Leighton, F. T. and Maggs, B.M., Personal Communications, Octo-
ber 1989.

[Lcighton 89-1] Leighton, F. T. and Maggs. B. M., Expanders Might Be Practical:
Fast Algorithms for Routing Around Faults in Multibutterflies, 30th
Annual Symposium on the Foundations of Computer Science, Octo-
ber 1989, pp. 384-389.

17

[Knight 891 Knight, T. F., Technologies for Low Latency Interconnection
Switches, ACM Symposium on Parallel Algorithms and Architec-
tures, June 1989, pp. 351-358.

[Franaszek 88] Franaszek, Peter and Georgiou, Christos, Multipath Hierarchies in
Interconnection Networks, Lecture Notes in Computer Science, Vol.
297, 1988, pp. 112-123.

[TMC 88] Data Vault Release Notes Version 5.0, Thinking Machines Corpora-
tion, Cambridge, Mass, September 1988.

[BBN 87] Inside the Butterfly Plus, BBN Advanced Computers Inc., Mass.,
October 1987.

[Symbolics 87] Symbolics 3600 Technical Summary, Symbolics, Inc., Cambridge,
Mass., 1987, p. 114.

[Kruskal 86] Kruskal, Clyde P. and Snir, Marc, A Unified Theory of Intercon-
nection Network Structure, Theoretical Computer Science, 1986, pp.
75-94.

(Greenberg 851 Greenberg, Ronald 1. and Leiserson, Charles E., Randomized Rout-
ing on Fat-Trees, IEEE 26th Annual Symposium on the Foundations
of Computer Science, November 1985.

[Leiserson 85] Leiserson, Charles E., Fat Trees: Universal Networks for Hardware
Efficient Supercomputing, IEEE Tr. on Computers, Vol. C-34 No.
10, October 1985, pp. 892-901.

[Siegel 85] Interconnection Networks for Large-Scale Parallel Processing, Lex-
ington Books, Lexington, Mass., 1985.

[Chin 84] Chin, Chi-Yuan and Hwang, Kai, Connection Principles for Multi-
path Packet Switching Networks, 10th Annual Symposium on Com-
puter Architecture, 1984, pp. 99-108.

[Kruskal 83] Kruskal. Clyde P. and Snir, Marc, The Performance of Multistage
Interconnection Networks for Multiprocessors, IEEE Tr. on Com-
puters, Vol. C-32, No. 12, December 1983, pp. 1091-1098.

[Lawrie 83] Padmanabhan, Krishnan and Lawrie, Duncan, A Class of Redundant
Path Multistage Interconnection Networks. IEEE Tr. on Computers,
Vol. C-32, No. 12, December 1983, pp. 1099-1108.

is

I

[Clark 82] Clark, George, C., Jr., and Cain, J. B., Error-Correction Coding for
Digital Communications, Plenum Press, New York, 1982.

[Peterson 72] Peterson, W. Wesley, and E.J. Weldon, Jr., Error-Correcting Codes,
MIT Press, Cambridge, Mass., 1972.

19

